286 research outputs found

    A Privacy Protection Mechanism for Mobile Online Social Networks

    Full text link
    A Location sharing system is the most critical component in mobile online social networks (MOSNS).Huge number of user\u27s location information will be stored by the service providers. In addition to the location privacy and social network privacy cannot be guaranteed to the user in the earlier work. Regarding the enhanced privacy against the inside attacker implemented by the service provider in (MOSNS), we initiate a new architecture with multiple servers .It introduces a protected solution which supports a location sharing among friends and strangers. The user friend set in each query is submitted to the location server it divides into multiple subset by the location server. If the user makes a query to the server the data can be retrieved only for the registered users instead of all. We use Three Layer of Security likely, High, Medium and Low for the Privacy implementation. Simultaneously with a location sharing it offers check ability of the searching results reoccurred from the servers. We also prove that the new construction is safe under the stronger security model with enhanced privacy

    High Performance and Low Power VLSI Synchronous Systems Using an Explicit Pulsed Dual Edge Triggered Flip Flops

    Get PDF
    ABSTRACT: An explicit pulsed dual edge triggered sense amplifier flip flops (DET-FF).In this dual edge triggered sense amplifier flip flop is used for low-power consumption and high performance application. By incorporating the dual edge triggering mechanism, the dual edge triggered flip flop is able to achieve low power consumption that has minimum delay. Clock gating is a popular technique used in many synchronous circuits; hence, the power dissipation is very much reduced. Reducing dynamic power reduction. Clock gating saves power by adding more logic gates in the circuit. It can be used in various applications like digital VLSI clocking system, buffers, registers, microprocessors etc. KEYWORDS: Clock pulse gating,high performance,low power,delay,pulse dual edge triggered, sense amplifier flip flop. I. INTRODUCTION In many digital very large scale integration (VLSI) design, which consists of the clock distribution network and timing elements, is one of the most power consumption. Flip-flops are critical timing elements in digital circuits which have a large impact on circuit speed and power consumption. The performance of the Flip-Flop is an important element to determine the performance of the whole synchronous circuit. In this dual edge triggered sense amplifier as developed from single edge triggered sense amplifier flip flops. At each rising or falling edge of a clock signal, the data stored in a set of flip-flops is readily available so that it can be applied as inputs to other combinational or sequential circuitry. Such flip-flops that store data on both the leading edge and the trailing edge of a clock pulse are referred to as double-edge triggered flip-flops otherwise it is called as single edge triggered flip-flops. The dual edge triggering is a very important technique is to reduce the power consumption in the clock distribution network. In this dual edge triggering is to introduce the clock gating. In this clock gating with clock storage element is to reduce the dynamic power. Two types of clock gating are used in the dual edge triggering mechanism. These are latch free clock gating and latch based clock gating. When technology scales down, total power dissipation will decrease and at the same time delay varies depends upon supply voltage, threshold voltage, oxide thickness. II.DUAL EDGE TRIGGERED FLIP FLOP The dual edge triggered flip flops have two stages. These are pulse generator stage and latching stage. If the clock pulse as the input of the pulse generator. It produces the triggering pulse signal. Latching stage as generate the output pulse signal. In this dual edge triggering flip flop used two types of clock gating. These are latch based clock gating and latch free clock gating. The general block is shown i

    Harris-Hessian Algorithm for Coin Apprehension

    Get PDF
    Abstract-Coins square measure integral a part of our day to day life. We tend to use coins everyplace like grocery market, banks, buses, trains etc. Therefore it is a basic want that coin is recognized and counted. The target of this paper is to classify the Indian coins of different denomination discharged recently. The objective is to notice the Indian coins and count its total worth. The system is projected to design coin recognition by applying Advanced HarrisHessian Algorithm, supported the parameters of Indian coins such as size, shape, weight, surface and so on . This paper presents a coin recognition methodology with rotation invariance. For circle detection use Hough Transform

    Prosthodontic perspective of laser application: A review

    Get PDF
    Background: A laser works primarily through stimulated emission which is responsible for the biological effects produced by the lasers. With the development of the ruby laser by Maiman in 1960, various studies on applications of lasers in dentistry have been conducted. Various wavelengths of dental lasers have been discovered so far but not all of them are used in prosthetic rehabilitation. Advent of diff erent laser systems has a considerable spectrum of applications in removable prosthodontics and fixed prosthodontics. Aim: When compared to traditional methods, laser treatments are less invasive and painful. Various studies have documented the capacity of laser wavelength and laser parameters used in prosthetic dentistry. Moreover, it is important to study the diff erent reactions; they can produce on the soft and hard tissues. Therefore, proper knowledge of properties of lasers and its mode of action are also important for its advantageous use. The aim of this article is to debrief the application of lasers in a prosthodontic perspective. Conclusion: The knowledge and ideas of pioneers in the field of laser are being developed and expanded into clinical practice that can enhance the quality of dental care and make the patient comfortable. The unique features and vast potential of dental lasers allow the overall success rate of any procedures. Thus, lasers have become an inexorable clinical tool in a dental armamentarium. Despite the benefits, laser energy also poses some risks. Hence, the clinician must understand the principles of lasers to take full advantage of its benefits and to provide safe and effective treatment. Clinical Significance: Recently, computer-aided design and rapid prototyping technology, surface treatment of base metal alloys, and study of occlusion in complete dentures using three-dimensional laser scanner have been developed. Thus, laser seems to be very helpful in reducing the complexity and thus provides a better platform and easier accomplishment of the task

    Make in India – Challenges and Opportunities

    Get PDF
    Make in India is new national initiative program by government aimed at transforming India into a global manufacturing hub. It includes a slew of proposals aimed at inviting both domestic and foreign companies to invest in India and help it become a manufacturing powerhouse. “ZERO DEFECT AND ZERO EFFECT”slogan was defined by our prime minister Narendera Modi, as part of Make in India programme which handle innovative processes materials, enhance skill development,technologies and the manufacturing mechanism is guided to make the goods that are defect free and have no negative environmental or ecological effects. Main mission of this project is to make the production India and sell the products all over the world. The primary focus of "Make in India" project is to enhance the annual growth rate of 25 sectors from 12-14 % to improve GDP rate and to create 100 million job opportunities within 2022. The purpose of this study is to explain the concept of Make in India campaign, its importance, schemes,and its impact on Indian economy. This paper also proposes to identify the challenges and opportunities as well as recommended possible solutions to deal with the same

    Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization

    Get PDF
    Interest in the utilization of bioactive plant compounds in foods has increased due to their biochemical activities (antioxidant, antimicrobial, etc.), and as alternatives in the reduction of the use of high concentrations of chemical substances. However, some of these additives are hydrophobic, thus being harder to disperse into the food matrix, which is generally water-based. A good alternative is the use of low concentrations of these compounds as nanoemulsions. The objective of the present study was to develop oil-in-water nanoemulsions containing dedo-de-moça pepper extract for food applications. Research in the development of these nanoemulsions was carried out using a high-speed homogenizer, followed by a high-pressure homogenizer. The influence of the following parameters was assessed: type and concentration of surfactants, hidrophilic-lipophilic balance, lipid/aqueous phase ratio, surfactant/oil ratio, pepper extract composition in nanoemulsion, and processing conditions. Nanoemulsions were evaluated by environmental (centrifugal and thermal) and storage stabilities, characterized by average droplet size and -potential measurements, color, interfacial tension, atomic force, and cryo-scanning electron microscopy. Those with average droplet size between 132 ± 2.0 and 145 ± 1.0 nm were developed depending on working pressure and number of cycles; -potential was around 36.71 ± 0.62 mV and the best nanoemulsion was stable to centrifugation and most of the thermal stresses. Droplets were characterized with cryo-scanning electron microscopy as being spherical, homogeneous, and stable, and remained stable when stored at 4 °C and room temperature for over 120 days. The pepper nanoemulsion, developed in the present study, has potential applications in the food industry.The first author gratefully acknowledges the CNPq and CAPES (National Council for Scientific and Technological Development, Program Science without Boarder) for the BSWE^ PhD (Process 236877/2012-1) fellowship, and CAPES for the national PhD fellowship. The last author acknowledges the São Paulo Research Foundation (FAPESP) Brazil, for the grant (CEPID-FoRC, 2013/07914-8).info:eu-repo/semantics/publishedVersio

    Enumeration of Functional T-Cell Subsets by Fluorescence-Immunospot Defines Signatures of Pathogen Burden in Tuberculosis

    Get PDF
    IFN-γ and IL-2 cytokine-profiles define three functional T-cell subsets which may correlate with pathogen load in chronic intracellular infections. We therefore investigated the feasibility of the immunospot platform to rapidly enumerate T-cell subsets by single-cell IFN-γ/IL-2 cytokine-profiling and establish whether immunospot-based T-cell signatures distinguish different clinical stages of human tuberculosis infection.We used fluorophore-labelled anti-IFN-γ and anti-IL-2 antibodies with digital overlay of spatially-mapped colour-filtered images to enumerate dual and single cytokine-secreting M. tuberculosis antigen-specific T-cells in tuberculosis patients and in latent tuberculosis infection (LTBI). We validated results against established measures of cytokine-secreting T-cells.Fluorescence-immunospot correlated closely with single-cytokine enzyme-linked-immunospot for IFN-γ-secreting T-cells and IL-2-secreting T-cells and flow-cytometry-based detection of dual IFN-γ/IL-2-secreting T-cells. The untreated tuberculosis signature was dominated by IFN-γ-only-secreting T-cells which shifted consistently in longitudinally-followed patients during treatment to a signature dominated by dual IFN-γ/IL-2-secreting T-cells in treated patients. The LTBI signature differed from active tuberculosis, with higher proportions of IL-2-only and IFN-γ/IL-2-secreting T-cells and lower proportions of IFN-γ-only-secreting T-cells.Fluorescence-immunospot is a quantitative, accurate measure of functional T-cell subsets; identification of cytokine-signatures of pathogen burden, distinct clinical stages of M. tuberculosis infection and long-term immune containment suggests application for treatment monitoring and vaccine evaluation

    Identification of Small Molecule Inhibitors of Pseudomonas aeruginosa Exoenzyme S Using a Yeast Phenotypic Screen

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS), a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens

    Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models

    Get PDF
    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ1–42. Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APPSwInd and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβx-42 sandwich ELISA measures in APPSwInd mice of 10–11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ1–38 occurs as Aβ1–42 levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ1–42 accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders
    corecore